
 

 
 
 
 

Abstract 
 

The work presented in this paper is intended to test 
crucial system services against stack overflow 
vulnerabilities. The focus of the test is the user-accessible 
variables, that is to say, the inputs from the user as 
specified at the command line or in a configuration file. 
The tester is defined as a process for automatically 
generating a wide variety of user-accessible variables that 
result in malicious buffers (an exploit). In this work, the 
search for successful exploits is formulated as an 
optimization problem and solved using evolutionary 
computation. Moreover the resulting attacks are passed 
through the Snort misuse detection system to observe the 
detection (or not) of each exploit. 
 

1 Introduction 

Buffer overflow attacks aim to alter the execution of a 
vulnerable program by copying data to a variable in such a 
way that the original storage capacity is exceeded [7]. This 
may cause excess data to spill over the unallocated address 
space and overwrite the pointer to the next instruction 
after the function call. However, in order to deploy the 
attack successfully, execution must be accurately diverted 
to attacker’s arbitrary code. To do so, the attacker might 
develop a program, which can assemble the different 
components of the malicious buffer. Moreover, because 
the location of the vulnerable program in address space is 
determined at runtime, certain characteristics of the 
malicious buffer should be approximated in the code. 

In this work we propose the utilization of Evolutionary 
Computation (EC) [8] to discover the characteristics of the 
malicious buffer with the objective of identifying a wide 
range of successful attacks. The population represents the 
set of candidate exploits. The EC approach only requires 
the address of the user-accessible variable being tested and 
the outcome of the attack, both of which can be 
determined by a debugger or an executable code analyzer. 
Evolution is guided by the definition of a suitably 
informative fitness (cost) function that determines the 
quality of a malicious buffer exploit. Attack diversity is 
maintained by modifying the fitness function to 
incorporate fitness sharing, which discounts fitness based 
on the degree of similarity between individuals (exploits). 

The fitness function also represents the principle 
mechanism for incorporating a priori knowledge. In this 
case, minimizing the NoOP sled is known to improve the 
chances of avoiding detection. Incorporating this bias into 
the fitness function, and testing the resulting exploits on a 
misuse detection system, Snort, indicated that the resulting 
attacks were more effective at avoiding detection. 

The principal objective of evolving overflow attacks is 
to assess critical applications against buffer overflow 
vulnerabilities. Recent work on vulnerability testing 
indicated that intrusion detection systems can detect a 
particular instance of an attack, but are unable to 
‘generalize’ to the class of overflow attacks [1, 3, 4, 13, 
15, 17, 18, 19]. The main contribution of this work is to 
automate the generation of successful malicious buffers. 
We consider this as a part of a wider ‘white hat’ 
framework where a co-evolutionary scheme is used to 
instigate an ‘arms race’ between exploits and detector.  
That is to say, detectors are only as good as our ability to 
provide signatures for new exploits. A framework based 
on co-evolution provides the basis discovering generic 
detectors for classes of attack by providing a sufficiently 
wide range of exploit behavior. 

The remainder of the paper is organized as follows. 
Section 2 describes the buffer overflow concepts. 
Methodology is discussed in Section 3. Experimental 
results are presented in Section 4 and conclusions are 
drawn in Section 5.   

2 Buffer overflow attacks 

In programming languages such as C, data integrity 
checks are minimal for performance reasons; therefore the 
programmer is responsible for making sure that the 
memory allocated for a variable is sufficient. If these 
checks are omitted, a buffer overflow occurs, thus the 
contents spill over to other variables and overwrite the 
unallocated memory addresses.  When a function is called 
within a program, the program uses a stack segment, 
which has a first-in-last-out structure, to push function 
variables. Moreover, a stack is used to remember which 
instruction is executed following the function call. This is 
called the return address and is stored at the bottom of the 
stack. Following the execution of a function, variables are 
popped from the stack and the return address is used to 
fetch the next instruction.   

Evolving Successful Stack Overflow Attacks for Vulnerability Testing  

H. Güneş Kayacık, A. Nur Zincir-Heywood, Malcolm Heywood 
 

Dalhousie University, Faculty of Computer Science, 
6050 University Avenue, Halifax, Nova Scotia. B3H 1W5  

{kayacik,zincir, mheywood}@cs.dal.ca 



 

 
 
 
 

 
Figure 1. Example of a stack buffer overflow 

 
Figure 1 shows three components: (i) A simple 

vulnerable program that omits the data integrity check; (ii) 
the stack layout after this program is started; and (iii) the 
malicious buffer overflow, which overwrites the return 
address with the attacker’s desired return address. The size 
of ‘char’ is assumed 1 byte and the size of ‘long’ is 
assumed 4 bytes. 

If the buffer overflow in the stack overwrites the return 
address, the execution of a program can be diverted to any 
arbitrary code. This is particularly dangerous if the 
program runs with super user privileges. In order to deploy 
a successful overflow, the attacker should create a 
malicious buffer, which (1) contains a shellcode and (2) 
overwrites the return address and gains control. Shellcode 
provides the assembly of instructions that spawn a root 
shell or adds a root privileged user. 

Since the address of the unchecked variable is 
determined at runtime, estimating the address of the first 
instruction in shellcode is crucial (i.e. jumping elsewhere 
in the shellcode will have an undetermined outcome). To 
increase the chance of success of the malicious buffer, two 
supplementary components are added to the shellcode. 
First, the end of the shellcode is flooded with the desired 
return address. Attackers can approximate the desired 
return address by determining the address of the current 
stack pointer (ESP) and appending a suitable offset. Since 
the desired return address is an approximation and it is 
important to jump to the first instruction of the shellcode, 
the head of the malicious buffer is filled with a special 
purpose instruction called ‘no operation’ or NoOP, which 
is used to intentionally waste computational cycles. 
Sequences of NoOP instructions are referred to as the 
NoOP sled. As long as the desired return address is 
accurate enough to direct execution to the NoOP sled or 
the first instruction of the shellcode, the attack is 
successful. However, the NoOP sled, which usually 
manifests itself as a long sequence of 0x90 bytes, presents 
a very obvious detection signature. Therefore from 
attacker’s point of view, shorter NoOP sleds are desirable, 
where this implies that the original stack pointer offset 
must be estimated more accurately. 

3  Methodology 

Our objective is to evolve programs that can craft 
buffer overflows to automate vulnerability testing. To do 

so, we employ Grammatical Evolution to discover the 
characteristics of a successful buffer overflow. Moreover, 
we utilize fitness sharing to encourage the evolution of 
different malicious buffers. For the purposes of this work, 
a simple (generic) vulnerable application was developed, 
which performs a data copy without checking the internal 
buffer size.  Resulting attacks are passed through the 
Snort1 intrusion detection system to assess the detection 
rate. 

3.1 Grammatical evolution 
Evolutionary Computation, and Genetic Programming 

(GP) in particular [9], provide several properties of utility 
to this work. The GP representation takes the form of a 
computer program, thus naturally fitting the objective of 
designing alternative malicious code. Performance is 
quantified using a fitness function, where there are no 
smoothness constraints on the form that such a function 
should take (unlike neural networks, where the cost 
function must typically be differentiable).  As with other 
forms of Evolutionary Computation, GP is based on a 
‘population’ of candidate solutions. In order to guide the 
‘evolution’ of such a population, selection and search 
operators are based on the concepts of natural selection 
and genetics respectively. Specifically, a selection 
operator is used to define which individuals get to survive 
and reproduce, whereas the search operators define how 
new individuals (children) are introduced into the 
population. In this case, two parents are selected with 
uniform probability from the original population. Search 
operators are then stochastically applied to the parents, 
thus creating two children. The fitness (performance) of 
the parents and children is then compared using the a 
priori defined fitness function (sections 3.1.1 and 3.1.2). If 
the children perform better than the parents, they replace 
the parents. Otherwise, the parents are retained.  Such a 
scheme results in a stochastic hill-climbing algorithm, 
where this forms the basis for the deterministic crowding 
method for multimodal optimization [11]. 

Where Grammatical Evolution (GE) [12] differs from 
GP is in the representation. Specifically, GE utilizes a 
separate genotypic and phenotypic representation. The 
genotypic representation is translated into the phenotypic 
form using a Context Free Grammar (CFG), typically of a 
Backus-Naur Form. The use of a CFG enforces the typing 
rules – syntax and semantics of the language – irrespective 
of the changes made by the search operators [12]. Unlike 
other structures typically employed to evolve computer 
programs, such as Tree or Linearly structured Genetic 
Programming; support for multi-typed languages is now 
straightforward. Moreover, we will also be able to make 
use of recent advances that combine GE with fitness 

                                                             
1 A widely used open source intrusion detection system, Section 3.3. 



 

 
 
 
 

sharing [11] to provide multiple solutions from the same 
population. 

In this case a simple C grammar was developed for 
generating programs that assemble the malicious buffer 
exploits. The resulting C program is an individual, which 
approximates the desired return address and assembles the 
malicious buffer exploit. Each individual of the population 
represents a buffer overflow attack. The grammar specifies 
the offset, size of the NoOP sled, and the number of 
desired return addresses; hence GE alters these parameters 
to generate a wide variety of malicious buffers. The 
exploit contains a NoOP sled, a 46-byte shellcode that 
spawns a UNIX shell, and back-to-back desired return 
addresses. The first set of experiments with a basic GE 
(detailed in Section 4) showed that the population 
converges to one type of solution. In our second and third 
set of experiments, niching based on fitness sharing [2, 11] 
was used to encourage population diversity, that is, 
multiple types of attack. Thus, a fit individual can get a 
low ‘shared’ fitness, if many individuals find a similar 
solution. Fitness sharing is implemented to pressure 
individuals into utilizing different NoOP sled sizes and 
return addresses. The generic parameters employed in 
training of the individuals are summarized in Table 1. 

Table 1. Training parameters 
Parameter Setting 
Number of individuals 200 
Number of generations 500 
Probability of mutation 0.0 
Probability of crossover 0.9 
Replacement Strategy Children replace the parents 

if their fitness is better 
Number of niches 5 
Training Time  Approximately 7 hours 

 
3.1.1 Fitness function. The fitness function is used to 

express several characteristics that are related to achieving 
the overall objective. That is to say, basing the fitness 
function on a binary criteria – such as, does this individual 
successfully gain super user status – would not provide a 
sufficiently informative function space for the efficient 
evolution of exploits. In this work, six characteristics of a 
malicious buffer are utilized: 

Existence of the shellcode (µshellcode): A binary flag 
declaring whether the (root shell access) shellcode is 
inserted into the malicious buffer successfully. Thus, even 
if the overflow is successful, without the shellcode, the 
attack cannot succeed.  

Success of the attack (µsuccess): The reaction of the 
application, i.e. a binary flag indicating whether the root 
shell was obtained.   

NoOP Sled Score: Based on the ratio of NoOP 
instructions to the overall size of NoOP sled prior the 
shellcode. If the execution jumps into the NoOP sled, any 
non-NoOP instruction in NoOP sled can have undesirable 

effects on the succeeding shellcode. The NoOP sled score 
is formulated as: 

# of non-NoOP instructions 
1 –  

NoOP sled length 

Back-to-back Desired Return Addresses Score:  Similar 
to NoOP sled score; it is based on the ratio of correct 
desired return addresses to the total number of 4-byte 
return addresses following the shellcode.  If the stack 
pointer is overwritten with a faulty desired return address, 
execution will not jump to the shellcode.  Score can be 
calculated with: 

# of faulty return addresses 
1 – 

Total # of return addresses 

Desired return address accuracy:  The difference 
between the desired return address and the actual address 
of the variable. Small difference indicates that the 
approximation is accurate.  Accuracy is formulated as: 

1 

address actual – address desired  + 1 

Score calculated on NoOP sled size: We consider this 
is the easiest characteristic of a buffer attack to detect, thus 
minimizing the size of the NoOP sled is considered to 
improve the chances of not being detected. This is 
implemented in the third set of experiments. Score on 
NoOP sled length is expressed as: 

1 

1 + NoOP sled length 

The last 4 characteristics are incorporated into the 
fitness function with their respective weights. In our 
experiments, the weights are all equal and detailed in 
Table 2. 

The fitness function provides the basis for directing the 
search for solutions. In this work the view is taken that a 
hierarchy of objectives exists. Thus, if the malicious buffer 
does not contain the shellcode (i.e. µshellcode = 0), the 
individual is assigned the minimum fitness. If the attack is 
successful (i.e. µsuccess = 1), the individual is assigned 
fitness between 100 and 120 based on the size of its NoOP 
sled. The perfect individual should be successful with a 
small NoOP sled, or no NoOP sled at all. If the attack is 
not successful, it is assigned a fitness based on the error 
rate of the NoOP sled, desired return addresses and the 
accuracy of the approximation. The overall fitness 
function incorporating these properties (with NoOP sled 
minimization) has the following form: 



 

 
 
 
 

! 

fitness = µshellcode "

µsuccess " 100 +WNS " score(NoOP)( ) +

1#µsuccess( ) "

WNE " score(NoOPError) +

WRE " score(retError) +

WDA " score(dist)

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

$ 

% 

& 
& 
& 
& & 

' 

( 

) 
) 
) 
) ) 

 

 
Table 2. Weights of the four characteristics of a 

malicious buffer 
Weight Value 

Error on NOOP Sled (WNE) 20 
Error on desired return addresses (WRE) 20 
Desired return address accuracy (WDA) 20 
NOOP sled size score (WNS)  20 
 
3.1.2 Fitness sharing. Although EC is a population 

based search algorithm, schema theory indicates that as 
the fitter individuals reproduce, the population diversity 
decreases, resulting in the population converging on a 
small region of the search space [10]. In order to 
encourage the same population to provide multiple unique 
solutions, we borrow the concept of Fitness Sharing from 
Genetic Algorithms. In this case the fitness of an 
individual is discounted in proportion to the similarity 
with others in the population. Such a scheme is introduced 
to encourage solutions with different NoOP sled lengths 
and number of desired return addresses. That is to say, 
given a successful attack, fitness sharing encourages the 
identification of additional variants of the same attack. 

Shared fitness for an individual i is calculated based on 
the raw fitness of the individual divided by the niche count 
mi: 

i

raw
shared

m

f
f =  

where niche count, mi, increases as the similarity of an 
individual to other individuals increases, and is calculated 
over the population of N individuals: 

!
=

=
N

j

jii dshm
1

, )(  

di,j denotes the Euclidean distance between individual i 
and j, which is calculated on two dimensions formed by 
NoOP sled length and the number of desired return 
addresses: 

! 

di, j = NoOPi " NoOPj( )
2

+ reti " ret j( )
2

 

If distance d is smaller than the determined radius σ, 
sharing function sh(d) returns a value between 0 and 1, 
which increases as the distance decreases. Hence the 
sharing function can be expressed as: 

! 

sh(d) =
1"

d

#
0

$ 

% 
& 

' & 

d <#

otherwise
 

σ is estimated from the population by determining the 
current extremes. This takes the form of the minimum and 
maximum values of the NoOP sled length and number of 
desired return addresses.  Given the number of niches q, σ 
can be calculated as follows [2]: 

! 

" =
max(NoOP) #min(NoOP)( )

2
+ max(ret) #min(ret)( )

2

2 q

 

As the population evolves, the boundaries formed by 
NoOP sled lengths and number of desired return addresses 
will also change. Since determining the boundaries 
requires a pass of the entire population, σ is calculated 
every 5 generations in our experiments. 

3.2 The vulnerable application 
Similar to the example given by Erickson [6], we 

developed a basic vulnerable application, but this time 
using four 500-byte arrays. Erickson [6] only employed 
one 500-byte array whereas our preliminary experiments 
with that application indicated that the NoOP sled is 
frequently too small to raise any alarms (detailed in 
Section 4). The vulnerable program has setuid bit enabled 
and runs with root privileges. It copies the first command 
line argument to the fourth array without checking the 
size. This means, a successful attack should deploy a 
malicious buffer that is long enough to overwrite the 
return address after exceeding 2,000 bytes. 

3.3 Intrusion detection system 
After initial experiments, the aforementioned bias 

towards a minimal NoOP sled was utilized to improve the 
chances of avoiding detection. To validate the 
enhancement, the attacks were passed through a misuse 
detection system, Snort, to observe the detection (or lack 
of detection) of the malicious buffers. Snort is one of the 
best-known lightweight IDSs, which attempts to balance 
(detection) performance, flexibility and simplicity. It 
represents a widely used open-source intrusion detection 
system, able to detect various attacks and probes including 
instances of buffer overflows, denial of service attacks and 
stealth port scans [14]. Snort 2.3.2 (build 12) was installed 
and patched with the latest signatures (Mar 9, 2005) from 
the Snort web site [16]. Since we are interested in the 
detection of shellcode attacks, all signatures are disabled 
except the shellcode signatures. There are 21 shellcode 
signatures, which mainly detect different encodings of 
NoOP instructions as well as other well-known 
instructions such as setting user or group ID to root. Other 
than the signature reduction, Snort is employed with 
default parameters. 

For the IDS to detect an attack, the attack in question 
should be manifested in the event stream that the IDS 
monitors. Since Snort is a network based IDS, this means 
the shellcode should appear in the network traffic. To 



 

 
 
 
 

make the shellcode apparent in the Snort event stream (i.e. 
the network traffic), the vulnerable application is altered to 
print the contents of a variable. To achieve this situation, 
the attacker connects to the target host via telnet and 
dispatches the malicious buffer. We assume that he/she 
has no way of suppressing the variable dump, which 
triggers the Snort signatures. Given the use of encrypted 
protocols such as SSH, we note that the shellcode may not 
always appear in the network traffic. However, our 
objective in employing Snort is not to observe the 
detection of the shellcode by a network based IDS, by 
itself. Instead, our objective is to determine the detection 
of the attack with a misuse detection system (especially 
since the NoOP sled length is being minimized) and Snort 
is one of the most widely used misuse detection systems. 
After each attack is deployed, the Snort log files are 
checked to determine how many alarms were raised. From 
the attacker’s point of view, between two successful 
attacks, the one that raises fewer alarms is favored. A 
similar evaluation methodology was employed to test the 
detection capabilities of IDSs on service vulnerability 
attacks in Vigna et al. [18]. 

4 Results 

In the initial set of experiments, fitness sharing is not 
utilized, the second set of experiments utilizes fitness 
sharing, whereas the third set of experiments incorporates 
the bias to encourage smaller NoOP sleds. 

The results are expressed in terms of fitness of the 
individuals (attacks) and the number of alerts that Snort 
generates when they were executed. Moreover, we are 
naturally interested in identifying whether a subset of 
attack properties is more correlated with evolving 
successful buffer overflow attacks than others. To do so, 
three characteristics of a malicious buffer are observed: 
the NoOP sled size, the number of desired return 
addresses, and an assessment of buffer overflow. For the 
latter, four types of buffer overflow are considered: 

 Invalid Buffer: The buffer does not contain the 
shellcode, hence has zero chance of success. 

 Valid Buffer: The buffer has NoOP sled, shellcode 
and desired return addresses present. 

 Viable: Over 10 trials, the buffer deploys 
successfully, obtaining a root shell. 

 Undetectable: In addition to its success, Snort 
raises no alarms during its execution. 

Table 3 details the assessment of buffer overflows for 
different experiments. In all three experiments, the C 
grammar (forms the program for assembling the malicious 
buffer) ensures that majority of the population is at least 
valid. Although niching reduces the number of viable 
buffers, it also encourages diversity in the population, 
which will be discussed later in this section.  

 

Table 3. Malicious buffer types and counts for 
three experiments 

 No 
Niching 

Niching Niching & 
NoOP min 

Invalid 2 6 2 
Valid 0 118 111 
Viable 146 54 57 

Undetectable 52 22 30 
 
Figure 2 summarizes the population from the three 

experiments with NoOP size and number of desired return 
addresses plotted with fitness. As mentioned above, the 
vulnerable variable is approximately 2000 bytes away 
from the return address (EIP).  Experiments with basic GE 
provided attacks that resulted in a range of return 
addresses. Introduction of the sharing function increased 
the diversity of all three parameters: fitness, NoOP size, 
and return address.  This indicates that the attacks learned 
to overwrite the EIP with an approximated return address. 
In the third set of experiments, two attacks stand out from 
the rest of the population with a fitness value of 110. 
These attacks successfully deployed, whilst using a single 
one NoOP instruction, making them very difficult to 
detect using signatures targeting the NoOP code. 
Moreover, this was achieved without compromising the 
success of the attack itself. 

Figure 3 shows the NoOP sled size and the accuracy of 
the desired return address. In all three experiments, NoOP 
sled size has a linear relation with the accuracy of the 
desired return address, i.e., the population appears on the 
far side of Figure 3. That is to say, as the accuracy gets 
better, the NoOP sled size gets smaller. Moreover in case 
of successful attacks, it is observed that NoOP sled size is 
always kept below 2,000 bytes. 



 

 
 
 
 

 
Figure 2. Fitness, NoOP sled size and the 

desired return address size of the population in 
the last generation 

 
Figure 4 details the mean fitness of the population over 

500 generations.  In all three experiments, populations 
converged to a solution after approximately 100 
generations.  In the niching experiments, mean fitness of 
the population is lower because attacks that generate valid 
buffers while maintaining diversity have a shared fitness 
comparable to the shared fitness of the attacks that 
generate viable buffers with similar parameters. 

Figure 5 shows the change of NoOP sled length over 
generations.  As indicated before, in all three experiments 
NoOP sizes are reduced below 200 to deploy viable buffer 
overflows. In Figure 4, we demonstrated that the 
population converges after 100 generations. In the 
experiments without NoOP minimization, after a few 
hundred generations, the mean NoOP sled length stops 
decreasing; whereas in the NoOP minimization 
experiments the fitness function continues to minimize 
NoOP sled length even if the buffer overflow deploys 
successfully. 

 
Figure 3. Fitness, NoOP sled size and the 

accuracy of the desired return address of the 
population in the last generation 

 
 

 
Figure 4. Mean raw fitness of the population over 

500 generations 
 

  



 

 
 
 
 

 
Figure 5. Mean NoOP size of the viable and 
undetected attacks over 500 generations 

 
In Figure 6, buffer overflows are plotted with NoOP 

sled sizes, generated alerts and the fitness. Since 
population without niching converged with less diversity, 
the number of alerts is 0, 1 or 2. In case of niching, alert 
count ranges between 0 and 10 (greater diversity in NoOP 
sled length). Signature analysis showed that the Snort 
NoOP signature (shown below), which monitors the 
existence of large blocks of 0x90, triggered all alerts.  

alert ip $EXTERNAL_NET 
$SHELLCODE_PORTS -> $HOME_NET any 
(msg:"SHELLCODE x86 NOOP"; content:"|90 90 
90 90 90 90 90 90 90 90 90 90 90 90|"; depth:128; 
reference:arachnids,181; classtype:shellcode-detect; 
sid:648; rev:7;) 

Figure 7 details the average alert count for viable 
attacks. Table 3 showed that the basic GE managed to 
produce the most undetectable attacks. However, it is also 
apparent that in terms of the average alert count of the 
population, niching with NoOP minimization produced the 
least alerts. Moreover niching with NoOP minimization 
resulted in two attacks with only one NoOP instruction 
each, effectively undetectable. 

5 Conclusion 

Grammatical Evolution was investigated within the 
context of vulnerability testing. Specifically, the evolved 
C program performs three tasks (1) approximating the 
address of the vulnerable variable, (2) determining the 
length of the NoOP sled and the number of desired return 
addresses (3) assembling the malicious buffer in the light 
of the characteristics established in first two tasks. As 
indicated before, between two attacks that deploy 
successfully, the one that raises fewer alarms is preferred. 
Hence, every 100 generations, the population is tested 

against Snort to determine the detection (or lack of 
detection) of the attacks. Results indicated that Snort 
detects buffer overflow attacks based only on the NoOP 
sled size. 

Three sets of experiments were performed, namely the 
basic GE, GE with niching which encourages a population 
to maintain diversity, and GE with niching and NoOP 
minimization since longer NoOP sleds are easily detected. 
Although all three experiments produced comparable 
results, basic GE produced the best mean fitness and the 
most viable attacks. On the other hand niching produced 
programs that can craft a malicious buffer with different 
NoOP sled sizes and number of desired return addresses. 
Furthermore, NoOP minimization produced smaller mean 
NoOP sled lengths and fewer alerts per population, which 
are desirable from an attacker’s point of view. Results also 
showed that in order an attack to be successful, the return 
address (EIP) should be overwritten with an accurate 
desired return address that directs the execution to a point 
in the NoOP sled or the first instruction of the shellcode.  
NoOP sled length decreases as the accuracy of the desired 
return address increases. 

 

 
Figure 6. Fitness, NoOP size and alert counts of 

the population in the last generation 
 



 

 
 
 
 

 
Figure 7. Average alert count of viable and 

undetectable attacks for three sets of experiments 
 
Future work will mainly focus on attack obfuscation to 

generate variant buffer overflows for IDS blind spot 
testing and the implementation of buffer overflows for a 
well-known service such as SSH or FTP. Moreover, we 
anticipate being able to integrate the attack generation 
component into a co-evolutionary context. The resulting 
arms race between detectors and exploits will provide 
generic detectors that do not rely on third parties first 
labeling previously unseen exploits. 

Acknowledgments 
This work was supported in part by Discovery grants 

from the Natural Sciences and Engineering Research 
Council of Canada, and the CFI New Opportunities 
program. All research was conducted at the NIMS 
Laboratory, http://www.cs.dal.ca/projectx/. 

Bibliography 
[1] Christodorescu M., Jha S., “Static analysis of executables to 

detect malicious patterns”, Proceedings of the USENIX 
Security Symposium, 2003. 

[2] Deb K., Goldberg D. E., “An Investigation of Niche and 
Species Formation in Genetic Function Optimization” 
Proceedings of the third international conference on Genetic 
algorithms, pp 42 - 50, 1-55860-006-3, 1989.  

[3] Detristan T., Ulenspiegel T., Malcom Y., Underduk M. S., 
"Polymorphic shellcode engine using spectrum analysis", 
Phrack Online Magazine, 61, 2003. 

[4] Dozier, G., Brown, D., Cain, K., Hurley, J., “Vulnerability 
analysis of immunity-based intrusion detection systems using 
evolutionary hackers,” Proceedings of the Genetic and 
Evolutionary Computation Conference, Lecture Notes in 
Computer Science, LNCS 3102, pp 263-274, 2004. 

[5] Eiben A.E., Smith J.E., “Introduction to Evolutionary 
Computing”, Springer, ISBN 3-540-40184-9, 2003. 

[6] Erickson J., “Hacking: The Art of Exploitation”, No Starch 
Press, ISBN 1-59327-007-0, Ch. 2, 2003. 

[7] Foster J.C., Osipov V., Bhalla N., Heinen N., “Buffer 
Overflow Attacks: Detect, Exploit, Prevent”, Syngress 
Publishing, ISBN 1-932266-67-4, Ch.5, 2005. 

[8] Goldberg D.E., Deb K., “A Comparative Analysis of 
Selection Schemes Used in Genetic Algorithms,” in 
Foundations of Genetic Algorithms, G.J.E. Rawlins (ed.), 
Morgan Kaufmann, ISBN 1-55860-170-8, 1991. 

[9] Koza J.R., “Genetic Programming”, MIT Press, 1992. 
[10] Langdon W.B., Poli R., “Foundations of Genetic 

Programming”, Springer-Verlag, IBSN 3-540-42451-2, 2002. 
[11] Miller B.L., Shaw M.J., “Genetic Algorithms with dynamic 

Niche Sharing for Multimodal Function optimization”, 
University Of Illinois at Urbana-Champaign, Dept. General 
Engineering, IlliGAL Report 95010, 1995.  

[12] O’Neill, M., Ryan, C.: “Grammatical Evolution”, IEEE 
Transactions on Evolutionary Computation, Vol. 5, No. 4, pp 
349-358, 2001. 

[13] Marti R., “THOR: A tool to test intrusion detection systems 
by variations of attacks”, Master’s Thesis, Swiss Federal 
Institute of Technology, March 2002. 

[14] Roesch, M., “Snort - lightweight intrusion detection for 
networks”, Proceedings of Thirteenth Systems Administration 
Conference – LISA, pp 229-238, 1999. 

[15] Rubin S., Jha S., Miller B.P., “Automatic Generation and 
Analysis of NIDS Attacks”, 20th Annual Computer Security 
Applications Conference - ACSAC, pp 28-38, 2004. 

[16] Snort Web Site - www.snort.org, last accessed Mar 2005. 
[17] Tan, K.M.C., Killourhy, K.S., Maxion, R.A., “Undermining 

an Anomaly-based Intrusion Detection System using 
Common Exploits”, 5th International Symposium on Recent 
Advances in Intrusion Detection - RAID, Lecture Notes in 
Computer Science, LNCS 2516, pp 54-73, 2002. 

[18] Vigna, G., Robertson, W., Balzarotti D., “Testing Network 
Based Intrusion Detection Signatures Using Mutant Exploits”, 
ACM Conference on Computer Security, 2004. 

[19] Wagner, D., Soto, P., “Mimicry Attacks on Host-based 
Intrusion Detection Systems”, ACM Conference on Computer 
Security, pp 255-264, 2002. 

 
 
 
 
 


